Dimerization of internalized epidermal growth factor receptors.
نویسندگان
چکیده
Binding of epidermal growth factor (EGF) to cell surface EGF receptors initiates the formation of the receptor homodimers that can be detected by covalent cross-linking in intact cells or in detergent-solubilized cell extracts. Low pH dissociation of EGF from surface receptors results in immediate monomerization of receptor dimers. Using chemical cross-linking during mild permeabilization or cell solubilization, we have detected dimers of internalized EGF receptors in human carcinoma A-431 cells and transfected NIH 3T3 cells that express human EGF receptors. The percentage of internalized cross-linked receptor dimers was similar to that observed for surface EGF receptors. Furthermore, at the time of maximal accumulation of EGF-receptor complexes within the endosomal compartment (10-15 min of incubation at 37 degrees C), both the dimeric and monomeric forms of the EGF receptor are tyrosine-phosphorylated to the same extent as surface dimer and monomer species. In transfected NIH 3T3 cells, the level of dimerized and internalized kinase-negative EGF receptors was not different from that observed for wild-type receptors. These data suggest that for some time after internalization EGF does not dissociate from its receptor and indicate that a receptor conformation is preserved intracellularly that allows maintenance of receptor-receptor interactions and tyrosine kinase activity.
منابع مشابه
Cetuximab/C225-induced intracellular trafficking of epidermal growth factor receptor.
The monoclonal antibody C225 interacts with the ectodomain of the epidermal growth factor (EGF) receptor (EGFR) to block ligand binding and initiates receptor endocytosis and intracellular trafficking. The data herein show that C225-dependent EGFR trafficking relocalizes the receptor to the endoplasmic reticulum (ER) and nucleus. This mechanism, which also involves interaction of the C225-inter...
متن کاملCrystal structure of human epidermal growth factor and its dimerization.
Epidermal growth factor (EGF) is a typical growth-stimulating peptide and functions by binding to specific cell-surface receptors and inducing dimerization of the receptors. Little is known about the molecular mechanism of EGF-induced dimerization of EGF receptors. The crystal structure of human EGF has been determined at pH 8.1. There are two human EGF molecules A and B in the asymmetric unit ...
متن کاملUltrafast cell switching for recording cell surface transitions: new insights into epidermal growth factor receptor signalling.
A pinched-flow deflection technology was developed for rapid single cell switching between biochemical microenvironments. Millisecond switching was used to stimulate and preserve epidermal growth factor receptor (EGFR) autophosphorylation transitions. Intramolecular phosphorylation initiates signal transduction, is silenced by phosphatase activity until EGFR dimerization enables intermolecular ...
متن کاملPertuzumab counteracts the inhibitory effect of ErbB2 on degradation of ErbB3.
Overexpression of ErbB2 and ErbB3 is found in several human cancers, and ErbB2-ErbB3 heterodimers are known as the most potent signaling units among ErbB dimers. While ErbB2 probably undergoes weak endocytosis, ErbB3 is readily internalized even in the absence of added ligand and without requirement for kinase activity. Overexpression of ErbB2 has been demonstrated to inhibit epidermal growth f...
متن کاملI. the Importance of Her2 in Breast Cancer
The human epidermal growth factor receptors (HER), also known as ERBB receptors, are a family of signal transduction proteins. There are 4 family members in humans—HER1, HER2, HER3, and HER4—each of which is composed of an extracellular (ligandbinding) domain, a transmembrane domain, and an intracellular tyrosine kinase, except for HER3, which lacks a tyrosine kinase domain (Figure 1). HER-fami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 266 34 شماره
صفحات -
تاریخ انتشار 1991